Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Arch Virol ; 168(4): 124, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2271114

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Asunto(s)
COVID-19 , Vacunas de ADN , Vacunas Virales , Humanos , Animales , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunas de ADN/genética , Hurones , Esparcimiento de Virus , Anticuerpos Antivirales , Anticuerpos Neutralizantes , ADN , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad Vacunal
2.
Comp Med ; 71(5): 369-382, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1498361

RESUMEN

Since the World Health Organization declared COVID-19 a pandemic in March 2020, millions of people have contracted SARS-CoV-2 and died from the infection. Several domestic and wild species have contracted the disease as well. From the beginning, scientists have been working to develop vaccines and establish therapies that can prevent disease development and improve the clinical outcome in infected people. To understand various aspects of viral pathogenesis and infection dynamics and to support preclinical evaluation of vaccines and therapeutics, a diverse number of animal species have been evaluated for use as models of the disease and infection in humans. Here, we discuss natural SARS-CoV-2 infection of domestic and captive wild animals, as well as the susceptibility of several species to experimental infection with this virus.


Asunto(s)
COVID-19 , Animales , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA